Distance-constrained labeling of trees

Zsolt Tuza

July 20, 2016

Let $G=(V, E)$ be a graph, and d a natural number. An $L(d, d-1, \ldots, 1)$ labeling of G with span s is a mapping $f: V \rightarrow\{0,1, \ldots, s\}$ with the following property: if the distance $d(u, v)$ of two vertices $u, v \in V$ is at most d, then

$$
|f(u)-f(v)| \geq d+1-d(u, v)
$$

The smallest s for which G admits an $L(d, d-1, \ldots, 1)$-labeling is denoted by $\lambda_{d, d-1, \ldots, 1}(G)$.

Conjecture (V. Halász and Zs. Tuza) For every fixed d, if T is a tree with maximum degree m, then

$$
\lambda_{d, d-1, \ldots, 1}(T) \leq\left\{\begin{aligned}
m^{h}+o\left(m^{h}\right) & \text { if } d=2 h \\
2 m^{h}+o\left(m^{h}\right) & \text { if } d=2 h+1
\end{aligned}\right.
$$

as $m \rightarrow \infty$.
In a stronger form we conjecture that $o\left(m^{h}\right)$ above can be replaced with $O\left(m^{h-1}\right)$, for both even and odd d. An upper bound of this kind is known to be valid for $d=2$ and $d=3$, by the results of [GY] and [CGSzT], respectively. For larger d we proved it in [HT] only for trees with diameter d.

References

[CGSzT] J. Clipperton, J. Gehrtz, Zs. Szaniszló, and D. Torkorno, L(3, 2, 1)labeling of simple graphs. VERUM, Valpariso University, 2006. (unpublished manuscript)
[GY] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2. SIAM J. Discrete Math. 5 (1992), 586-595.
[HT] V. Halász and Zs. Tuza, Distance-constrained labeling of complete trees. Discrete Math. 338 (2015), 1398-1406.

