Problem on near-Skolem sequences

Alexander Rosa

August 15, 2016

The well known notions of Skolem sequence, hooked Skolem sequence, near-Skolem sequence and hooked near-Skolem sequence (cf.[2]) can be extended as follows.

Let $n \geq 3$, let $\{p, q\} \subset\{1,2, \ldots, n\}, N_{p, q}=\{1,2, \ldots, n\} \backslash\{p, q\}$. Similarly to [1], define a (p, q)-near-Skolem sequence of order n to be a sequence $S=$ $\left(s_{1}, s_{2}, \ldots, s_{2 n-3}\right)$ where $s_{i} \in N_{p, q} \cup\{0\}$ satisfies
(i) there is exactly one $k \in\{1,2, \ldots, 2 n-3\}$ such that $s_{k}=0$
(ii) for every $k \in N_{p, q}$ there are exactly two elements $s_{i}, s_{j} \in S, i<j$, such that $s_{i}=s_{j}=k$
(iii) if $s_{i}=s_{j}=k$ then $j-i=k$.

The integers p and q are defects. A (p, q)-near-Skolem sequence is perfect when $s_{2 n-3}=0$, and is hooked when $s_{2 n-4}=0$.
For example, $(1,1,7,8,3,5,2,3,2,7,5,8,0)$ is a perfect $(4,6)$-near-Skolem sequence of order 8 , and $(8,6,4,7,1,1,4,6,8,3,7,0,3)$ is a hooked (2,5)-nearSkolem sequence of order 8 .

Let $n \geq 7$. We propose the following conjecture.
Conjecture. Let $n \geq 7$.
(i) A perfect (p, q)-near-Skolem sequence of order n exists if and only if either $n \equiv 0,1(\bmod 4)$ and $p+q$ is even, or $n \equiv 2,3(\bmod 4)$ and $p+q$ is odd;
(ii) A hooked (p, q)-near-Skolem sequence of order n exists if and only if either $n \equiv 0,1(\bmod 4)$ and $p+q$ is odd, or $n \equiv 2,3(\bmod 4)$ and $p+q$ is even.

The condition $n \geq 7$ is necessary. I have verified the above conjecture for all $n, 7 \leq n \leq 13$.

References

[1] N. Shalaby, Skolem Sequences: Generalizations and Applications, Ph.D. Thesis, McMaster University 1991.
[2] N. Shalaby, Skolem and Langford sequences in: Handbook of Combinatorial Designs (Ed. C.J. Colbourn, J.H. Dinitz) CRC Press 2007 pp. 612-616.

