Distance magic and group distance magic graphs

Sylwia Cichacz, Dalibor Froncek

July 20, 2016

A distance magic labeling (also called sigma labeling) of a graph $G=$ (V, E) of order n is a bijection $\ell: V \rightarrow\{1,2, \ldots, n\}$ with the property that there is a positive integer k (called the magic constant) such that

$$
w(x)=\sum_{y \in N_{G}(x)} l(y)=k \text { for every } x \in V(G)
$$

where $w(x)$ is the weight of vertex x. If a graph G admits a distance magic labeling, then we say that G is a distance magic graph, see [1].

The notion of group distance magic labeling of graphs was introduced in [2]. Let G be a graph with n vertices and Γ an Abelian group with n elements. We call a bijection $g: V(G) \rightarrow \Gamma$ a Γ-distance magic labeling if for all $x \in V(G)$ we have $w(x)=\mu$ for some μ in Γ. A graph G is called a group distance magic graph if there exists a Γ-distance magic labeling for every Abelian group Γ of order $|V(G)|$.

Let G be a distance magic graph of order n. If we replace n in $\{1,2, \ldots, n\}$ by 0 , we obtain a \mathbb{Z}_{n}-distance magic labeling. Thus, every graph with n vertices and a distance magic labeling also admits a \mathbb{Z}_{n}-distance magic labeling. The converse is not necessarily true (see, e.g., [2]). However, so far there is not known a distance magic graph that is not group distance magic.

Open problem: if G is a distance magic graph, then is G group distance magic?

References

[1] S. Arumugam, D. Froncek, N. Kamatchi, Distance Magic Graphs-A Survey, Journal of the Indonesian Mathematical Society, Special Edition (2011) 11-26.
[2] D. Froncek, Group distance magic labeling of of Cartesian products of cycles, Australasian Journal of Combinatorics 55 (2013) 167-174.

