Strong Chromatic Index of Unit Distance Graphs

Michał Dȩbski

Faculty of Mathematics and Information Science Warsaw University of Technology, Poland

The strong chromatic index of a graph G, denoted $s^{\prime}(G)$, is the minimum possible number of colors in a coloring of edges of G such that each color class is an induced matching (or: if edges e and f have the same color, then both vertices of e are not adjacent to any vertex of f).

A graph G is a unit distance graph in \mathbb{R}^{n} if vertices of G can be uniquely indentified with points in \mathbb{R}^{n} so that $u v$ is an edge of G if and only if the Euclidean distance between the points indentified with u and v is 1 .

We try to estimate the largest possible value $s^{\prime}(G)$, where G is a unit distance graph (in \mathbb{R}^{2} or \mathbb{R}^{\nVdash}) of maximum degree Δ. It is related to the problem posed by Erdős and Nešetřil in 1985 (they conjectured that $s^{\prime}(G) \leq$ $\frac{5}{4} \Delta^{2}$ for every graph G, while it is easy to prove that $\left.s^{\prime}(G) \leq 2 \Delta^{2}\right)$.

We still do not know the correct order of magnitude. We show that $s^{\prime}(G) \leq c \frac{\Delta^{2}}{\ln \Delta}$ (where G is a unit distance graph in \mathbb{R}^{3} of maximum degree $\Delta)$. However, some considerations suggest that the correct answer may be much lower, maybe even linear in Δ.
michal.debski87@gmail.com

[^0]
[^0]: ${ }^{0}$ Research supported by the Polish National Science Center, decision no DEC2013/11/N/ST1/03199

