Strong Chromatic Index of Unit Distance Graphs

Michał Dębski

Faculty of Mathematics and Information Science Warsaw University of Technology, Poland

The strong chromatic index of a graph G, denoted s'(G), is the minimum possible number of colors in a coloring of edges of G such that each color class is an induced matching (or: if edges e and f have the same color, then both vertices of e are not adjacent to any vertex of e).

A graph G is a unit distance graph in \mathbb{R}^n if vertices of G can be uniquely indentified with points in \mathbb{R}^n so that uv is an edge of G if and only if the Euclidean distance between the points indentified with u and v is 1.

We try to estimate the largest possible value s'(G), where G is a unit distance graph (in \mathbb{R}^2 or $\mathbb{R}^{\mathbb{H}}$) of maximum degree Δ . It is related to the problem posed by Erdős and Nešetřil in 1985 (they conjectured that $s'(G) \leq \frac{5}{4}\Delta^2$ for every graph G, while it is easy to prove that $s'(G) \leq 2\Delta^2$).

We still do not know the correct order of magnitude. We show that $s'(G) \leq c \frac{\Delta^2}{\ln \Delta}$ (where G is a unit distance graph in \mathbb{R}^3 of maximum degree Δ). However, some considerations suggest that the correct answer may be much lower, maybe even linear in Δ .

michal.debski87@gmail.com

 $^{^0\}mathrm{Research}$ supported by the Polish National Science Center, decision no DEC-2013/11/N/ST1/03199